Package: DBModelSelect 0.2.1
Scott H. Koeneman
DBModelSelect: Distribution-Based Model Selection
Perform model selection using distribution and probability-based methods, including standardized AIC, BIC, and AICc. These standardized information criteria allow one to perform model selection in a way similar to the prevalent "Rule of 2" method, but formalize the method to rely on probability theory. A novel goodness-of-fit procedure for assessing linear regression models is also available. This test relies on theoretical properties of the estimated error variance for a normal linear regression model, and employs a bootstrap procedure to assess the null hypothesis that the fitted model shows no lack of fit. For more information, see Koeneman and Cavanaugh (2023) <arxiv:2309.10614>. Functionality to perform all subsets linear or generalized linear regression is also available.
Authors:
DBModelSelect_0.2.1.tar.gz
DBModelSelect_0.2.1.zip(r-4.5)DBModelSelect_0.2.1.zip(r-4.4)DBModelSelect_0.2.1.zip(r-4.3)
DBModelSelect_0.2.1.tgz(r-4.4-any)DBModelSelect_0.2.1.tgz(r-4.3-any)
DBModelSelect_0.2.1.tar.gz(r-4.5-noble)DBModelSelect_0.2.1.tar.gz(r-4.4-noble)
DBModelSelect_0.2.1.tgz(r-4.4-emscripten)DBModelSelect_0.2.1.tgz(r-4.3-emscripten)
DBModelSelect.pdf |DBModelSelect.html✨
DBModelSelect/json (API)
NEWS
# Install 'DBModelSelect' in R: |
install.packages('DBModelSelect', repos = c('https://shkoeneman.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/shkoeneman/dbmodelselect/issues
Last updated 8 months agofrom:29e5d48ebd. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-win | OK | Nov 09 2024 |
R-4.5-linux | OK | Nov 09 2024 |
R-4.4-win | OK | Nov 09 2024 |
R-4.4-mac | OK | Nov 09 2024 |
R-4.3-win | OK | Nov 09 2024 |
R-4.3-mac | OK | Nov 09 2024 |
Exports:AICcBootGOFTestLMFitGLMSubsetsFitLMSubsetsStandICModelSelect
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Distribution-Based Model Selection | DBModelSelect-package DBModelSelect |
Corrected AIC for linear models | AICc |
Bootstrap goodness-of-fit procedure for linear models | BootGOFTestLM print.BootGOFTestLM |
Perform all subsets regression for generalized linear models | FitGLMSubsets |
Perform all subsets linear regression | FitLMSubsets |
Model selection using standardized information criteria | plot.StandICModelSelect print.StandICModelSelect StandICModelSelect |